11,772 research outputs found

    Seismic Response of Wind Turbines on Caisson-Type Foundations in Soft Clay

    Get PDF

    Selected aspects of lunar mare geology from Apollo orbital photography

    Get PDF
    Crater size-frequency distributions were studied (100-500 m) and are shown to provide significant integrated information concerning mare surface ages, subsurface stratigraphy, and surficial geology. Equilibrium cratering is discussed gradually reducing the relative numbers of craters smaller than 300-400 m in diameter as surfaces age and regolith thickens. Results for surface ages are in good agreement with other published crater ages. The existing correlations of large ring structures among various circular mare basins are shown to be based on criteria that are inconsistent and nonstandardized. A means of comparing equivalent ring structures in the different maria is proposed which takes into account the important characteristics of young unflooded basins (Orientale) as well as the progressive development of tectonic and volcanic features within the older flooded maria. Specific geologic aspects of several of the lunar maria are discussed and especially Mare Smythii, because of its great age and significantly different surface morphology. Lunar photographs and maps are shown

    Cooldown time for simple cryogenic pipelines

    Get PDF
    Cooldown time for simple cryogenic pipeline

    Calculating partial expected value of perfect information via Monte Carlo sampling algorithms

    Get PDF
    Partial expected value of perfect information (EVPI) calculations can quantify the value of learning about particular subsets of uncertain parameters in decision models. Published case studies have used different computational approaches. This article examines the computation of partial EVPI estimates via Monte Carlo sampling algorithms. The mathematical definition shows 2 nested expectations, which must be evaluated separately because of the need to compute a maximum between them. A generalized Monte Carlo sampling algorithm uses nested simulation with an outer loop to sample parameters of interest and, conditional upon these, an inner loop to sample remaining uncertain parameters. Alternative computation methods and shortcut algorithms are discussed and mathematical conditions for their use considered. Maxima of Monte Carlo estimates of expectations are biased upward, and the authors show that the use of small samples results in biased EVPI estimates. Three case studies illustrate 1) the bias due to maximization and also the inaccuracy of shortcut algorithms 2) when correlated variables are present and 3) when there is nonlinearity in net benefit functions. If relatively small correlation or nonlinearity is present, then the shortcut algorithm can be substantially inaccurate. Empirical investigation of the numbers of Monte Carlo samples suggests that fewer samples on the outer level and more on the inner level could be efficient and that relatively small numbers of samples can sometimes be used. Several remaining areas for methodological development are set out. A wider application of partial EVPI is recommended both for greater understanding of decision uncertainty and for analyzing research priorities

    Do Labyrinthine Legal Limits on Leverage Lessen the Likelihood of Losses? An Analytical Framework

    Get PDF
    A common theme in the regulation of financial institutions and transactions is leverage constraints. Although such constraints are implemented in various ways—from minimum net capital rules to margin requirements to credit limits—the basic motivation is the same: to limit the potential losses of certain counterparties. However, the emergence of dynamic trading strategies, derivative securities, and other financial innovations poses new challenges to these constraints. We propose a simple analytical framework for specifying leverage constraints that addresses this challenge by explicitly linking the likelihood of financial loss to the behavior of the financial entity under supervision and prevailing market conditions. An immediate implication of this framework is that not all leverage is created equal, and any fixed numerical limit can lead to dramatically different loss probabilities over time and across assets and investment styles. This framework can also be used to investigate the macroprudential policy implications of microprudential regulations through the general-equilibrium impact of leverage constraints on market parameters such as volatility and tail probabilities.Massachusetts Institute of Technology. Laboratory for Financial EngineeringNorthwestern University School of Law (Faculty Research Program

    An Evolutionary Model of Bounded Rationality and Intelligence

    Get PDF
    Background: Most economic theories are based on the premise that individuals maximize their own self-interest and correctly incorporate the structure of their environment into all decisions, thanks to human intelligence. The influence of this paradigm goes far beyond academia–it underlies current macroeconomic and monetary policies, and is also an integral part of existing financial regulations. However, there is mounting empirical and experimental evidence, including the recent financial crisis, suggesting that humans do not always behave rationally, but often make seemingly random and suboptimal decisions. Methods and Findings: Here we propose to reconcile these contradictory perspectives by developing a simple binary-choice model that takes evolutionary consequences of decisions into account as well as the role of intelligence, which we define as any ability of an individual to increase its genetic success. If no intelligence is present, our model produces results consistent with prior literature and shows that risks that are independent across individuals in a generation generally lead to risk-neutral behaviors, but that risks that are correlated across a generation can lead to behaviors such as risk aversion, loss aversion, probability matching, and randomization. When intelligence is present the nature of risk also matters, and we show that even when risks are independent, either risk-neutral behavior or probability matching will occur depending upon the cost of intelligence in terms of reproductive success. In the case of correlated risks, we derive an implicit formula that shows how intelligence can emerge via selection, why it may be bounded, and how such bounds typically imply the coexistence of multiple levels and types of intelligence as a reflection of varying environmental conditions. Conclusions: Rational economic behavior in which individuals maximize their own self interest is only one of many possible types of behavior that arise from natural selection. The key to understanding which types of behavior are more likely to survive is how behavior affects reproductive success in a given population’s environment. From this perspective, intelligence is naturally defined as behavior that increases the probability of reproductive success, and bounds on rationality are determined by physiological and environmental constraints.Massachusetts Institute of Technology. Laboratory for Financial Engineerin

    Impossible Frontiers

    Get PDF
    A key result of the capital asset pricing model (CAPM) is that the market portfolio—the portfolio of all assets in which each asset's weight is proportional to its total market capitalization—lies on the mean-variance-efficient frontier, the set of portfolios having mean-variance characteristics that cannot be improved upon. Therefore, the CAPM cannot be consistent with efficient frontiers for which every frontier portfolio has at least one negative weight or short position. We call such efficient frontiers “impossible,” and show that impossible frontiers are difficult to avoid. In particular, as the number of assets, n, grows, we prove that the probability that a generically chosen frontier is impossible tends to one at a geometric rate. In fact, for one natural class of distributions, nearly one-eighth of all assets on a frontier is expected to have negative weights for every portfolio on the frontier. We also show that the expected minimum amount of short selling across frontier portfolios grows linearly with n, and even when short sales are constrained to some finite level, an impossible frontier remains impossible. Using daily and monthly U.S. stock returns, we document the impossibility of efficient frontiers in the data.AlphaSimplex Group, LLCMassachusetts Institute of Technology. Laboratory for Financial Engineerin

    Dynamic Loss Probabilities and Implications for Financial Regulation

    Get PDF
    Much of financial regulation and supervision is devoted to ensuring the safety and soundness of financial institutions. Such micro- and macro-prudential policies are almost always formulated as capital requirements, leverage constraints, and other statutory restrictions designed to limit the probability of extreme financial loss to some small but acceptable threshold. However, if the risks of a financial institution\u27s assets vary over time and across circumstances, then the efficacy of financial regulations necessarily varies in lockstep unless the regulations are adaptive. We illustrate this principle with empirical examples drawn from the financial industry, and show how the interaction of certain regulations with dynamic loss probabilities can have the unintended consequence of amplifying financial losses. We propose an ambitious research agenda in which legal scholars and financial economists collaborate to develop optimally adaptive regulations that anticipate the endogeneity of risk-taking behavior
    • …
    corecore